88 research outputs found

    A comparison of third-generation semi-invasive arterial waveform analysis with thermodilution in patients undergoing coronary surgery

    Get PDF
    Uncalibrated semi-invasive continous monitoring of cardiac index (CI) has recently gained increasing interest. The aim of the present study was to compare the accuracy of CI determination based on arterial waveform analysis with transpulmonary thermodilution. Fifty patients scheduled for elective coronary surgery were studied after induction of anaesthesia and before and after cardiopulmonary bypass (CPB), respectively. Each patient was monitored with a central venous line, the PiCCO system, and the FloTrac/Vigileo-system. Measurements included CI derived by transpulmonary thermodilution and uncalibrated semi-invasive pulse contour analysis. Percentage changes of CI were calculated. There was a moderate, but significant correlation between pulse contour CI and thermodilution CI both before (r(2) = 0.72, P < 0.0001) and after (r(2) = 0.62, P < 0.0001) CPB, with a percentage error of 31% and 25%, respectively. Changes in pulse contour CI showed a significant correlation with changes in thermodilution CI both before (r(2) = 0.52, P < 0.0001) and after (r(2) = 0.67, P < 0.0001) CPB. Our findings demonstrated that uncalibrated semi-invasive monitoring system was able to reliably measure CI compared with transpulmonary thermodilution in patients undergoing elective coronary surgery. Furthermore, the semi-invasive monitoring device was able to track haemodynamic changes and trends

    Hypothermia and postconditioning after cardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation, apoptosis and remodeling

    Get PDF
    Background: Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia. Methodology/Principal Findings: Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1beta and IL-6 mRNA up-regulation, and (iv) IL-1beta protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached. Conclusions/Significance: Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression

    Mild hypothermia alone or in combination with anesthetic post-conditioning reduces expression of inflammatory cytokines in the cerebral cortex of pigs after cardiopulmonary resuscitation

    Get PDF
    Introduction: Hypothermia improves survival and neurological recovery after cardiac arrest. Pro-inflammatory cytokines have been implicated in focal cerebral ischemia/reperfusion in-jury. It is unknown whether cardiac arrest also triggers the release of cerebral inflammatory molecules, and whether therapeutic hypothermia alters this inflammatory response. This study sought to examine whether hypothermia or the combination of hypothermia with anes-thetic postconditioning with sevoflurane affect cerebral inflammatory response after cardio-pulmonary resuscitation. Methods: Thirty pigs (28 - 34kg) were subjected to cardiac arrest following temporary coro-nary artery occlusion. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. Return of spontaneous circulation was achieved in 21 animals who were randomized to ei-ther normothermia at 38degreesC, hypothermia at 33degreesC or hypothermia at 33degreesC combined with se-voflurane (each group: n = 7) for 24 hours. The effects of hypothermia and the combination of hypothermia with sevoflurane on cerebral inflammatory response after cardiopulmonary resuscitation were studied using tissue samples from the cerebral cortex of pigs euthanized after 24 hours and employing quantitative RT-PCR and ELISA techniques. Results: Global cerebral ischemia following resuscitation resulted in significant upregulation of cerebral tissue inflammatory cytokine mRNA expression (mean +/- SD; interleukin (IL)-1beta 8.7 +/- 4.0, IL-6 4.3 +/- 2.6, IL-10 2.5 +/- 1.6, tumor necrosis factor (TNF)alpha 2.8 +/- 1.8, intercellular adhesion molecule-1 (ICAM-1) 4.0 +/- 1.9-fold compared with sham control) and IL-1beta protein concentration (1.9 +/- 0.6-fold compared with sham control). Hypothermia was associated with a significant (P <0.05 versus normothermia) reduction in cerebral inflammatory cytokine mRNA expression (IL-1beta 1.7 +/- 1.0, IL-6 2.2 +/- 1.1, IL-10 0.8 +/- 0.4, TNFalpha 1.1 +/- 0.6, ICAM-1 1.9 +/- 0.7-fold compared with sham control). These results were also confirmed for IL-1beta on protein level. Experimental settings employing hypothermia in combination with sevoflurane showed that the volatile anesthetic did not confer additional anti-inflammatory effects com-pared with hypothermia alone. Conclusions: Mild therapeutic hypothermia resulted in decreased expression of typical ce-rebral inflammatory mediators after cardiopulmonary resuscitation. This may confer, at least in part, neuroprotection following global cerebral ischemia and resuscitation

    Feasibility and beneficial effects of an early goal directed therapy after cardiac arrest: evaluation by conductance method

    Get PDF
    Although beneficial effects of an early goal directed therapy (EGDT) after cardiac arrest and successful return of spontaneous circulation (ROSC) have been described, clinical implementation in this period seems rather difficult. The aim of the present study was to investigate the feasibility and the impact of EGDT on myocardial damage and function after cardiac resuscitation. A translational pig model which has been carefully adapted to the clinical setting was employed. After 8 min of cardiac arrest and successful ROSC, pigs were randomized to receive either EGDT (EGDT group) or therapy by random computer-controlled hemodynamic thresholds (noEGDT group). Therapeutic algorithms included blood gas analysis, conductance catheter method, thermodilution cardiac output and transesophageal echocardiography. Twenty-one animals achieved successful ROSC of which 13 pigs survived the whole experimental period and could be included into final analysis. cTnT and LDH concentrations were lower in the EGDT group without reaching statistical significance. Comparison of lactate concentrations between 1 and 8 h after ROSC exhibited a decrease to nearly baseline levels within the EGDT group (1 h vs 8 h: 7.9 vs. 1.7 mmol/l, P < 0.01), while in the noEGDT group lactate concentrations did not significantly decrease. The EGDT group revealed a higher initial need for fluids (P < 0.05) and less epinephrine administration (P < 0.05) post ROSC. Conductance method determined significant higher values for preload recruitable stroke work, ejection fraction and maximum rate of pressure change in the ventricle for the EGDT group. EGDT after cardiac arrest is associated with a significant decrease of lactate levels to nearly baseline and is able to improve systolic myocardial function. Although the results of our study suggest that implementation of an EGDT algorithm for post cardiac arrest care seems feasible, the impact and implementation of EGDT algorithms after cardiac arrest need to be further investigated
    corecore